Source code for aif360.algorithms.postprocessing.eq_odds_postprocessing

# Original work Copyright (c) 2017 Geoff Pleiss
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np
from scipy.optimize import linprog

from aif360.algorithms import Transformer
from aif360.metrics import ClassificationMetric, utils


[docs]class EqOddsPostprocessing(Transformer): """Equalized odds postprocessing is a post-processing technique that solves a linear program to find probabilities with which to change output labels to optimize equalized odds [8]_ [9]_. References: .. [8] M. Hardt, E. Price, and N. Srebro, "Equality of Opportunity in Supervised Learning," Conference on Neural Information Processing Systems, 2016. .. [9] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural Information Processing Systems, 2017. """ def __init__(self, unprivileged_groups, privileged_groups, seed=None): """ Args: unprivileged_groups (list(dict)): Representation for unprivileged group. privileged_groups (list(dict)): Representation for privileged group. seed (int, optional): Seed to make `predict` repeatable. """ super(EqOddsPostprocessing, self).__init__( unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups, seed=seed) self.seed = seed self.model_params = None self.unprivileged_groups = unprivileged_groups self.privileged_groups = privileged_groups
[docs] def fit(self, dataset_true, dataset_pred): """Compute parameters for equalizing odds using true and predicted labels. Args: true_dataset (BinaryLabelDataset): Dataset containing true labels. pred_dataset (BinaryLabelDataset): Dataset containing predicted labels. Returns: EqOddsPostprocessing: Returns self. """ metric = ClassificationMetric(dataset_true, dataset_pred, unprivileged_groups=self.unprivileged_groups, privileged_groups=self.privileged_groups) # compute basic statistics sbr = metric.num_instances(privileged=True) / metric.num_instances() obr = metric.num_instances(privileged=False) / metric.num_instances() fpr0 = metric.false_positive_rate(privileged=True) fpr1 = metric.false_positive_rate(privileged=False) fnr0 = metric.false_negative_rate(privileged=True) fnr1 = metric.false_negative_rate(privileged=False) tpr0 = metric.true_positive_rate(privileged=True) tpr1 = metric.true_positive_rate(privileged=False) tnr0 = metric.true_negative_rate(privileged=True) tnr1 = metric.true_negative_rate(privileged=False) # linear program has 4 decision variables: # [Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 0]; # Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 0]; # Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 1]; # Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 1]] # Coefficients of the linear objective function to be minimized. c = np.array([fpr0 - tpr0, tnr0 - fnr0, fpr1 - tpr1, tnr1 - fnr1]) # A_ub - 2-D array which, when matrix-multiplied by x, gives the values # of the upper-bound inequality constraints at x # b_ub - 1-D array of values representing the upper-bound of each # inequality constraint (row) in A_ub. # Just to keep these between zero and one A_ub = np.array([[ 1, 0, 0, 0], [-1, 0, 0, 0], [ 0, 1, 0, 0], [ 0, -1, 0, 0], [ 0, 0, 1, 0], [ 0, 0, -1, 0], [ 0, 0, 0, 1], [ 0, 0, 0, -1]], dtype=np.float64) b_ub = np.array([1, 0, 1, 0, 1, 0, 1, 0], dtype=np.float64) # Create boolean conditioning vectors for protected groups cond_vec_priv = utils.compute_boolean_conditioning_vector( dataset_pred.protected_attributes, dataset_pred.protected_attribute_names, self.privileged_groups) cond_vec_unpriv = utils.compute_boolean_conditioning_vector( dataset_pred.protected_attributes, dataset_pred.protected_attribute_names, self.unprivileged_groups) sconst = np.ravel( dataset_pred.labels[cond_vec_priv] == dataset_pred.favorable_label) sflip = np.ravel( dataset_pred.labels[cond_vec_priv] == dataset_pred.unfavorable_label) oconst = np.ravel( dataset_pred.labels[cond_vec_unpriv] == dataset_pred.favorable_label) oflip = np.ravel( dataset_pred.labels[cond_vec_unpriv] == dataset_pred.unfavorable_label) y_true = dataset_true.labels.ravel() sm_tn = np.logical_and(sflip, y_true[cond_vec_priv] == dataset_true.unfavorable_label, dtype=np.float64) sm_fn = np.logical_and(sflip, y_true[cond_vec_priv] == dataset_true.favorable_label, dtype=np.float64) sm_fp = np.logical_and(sconst, y_true[cond_vec_priv] == dataset_true.unfavorable_label, dtype=np.float64) sm_tp = np.logical_and(sconst, y_true[cond_vec_priv] == dataset_true.favorable_label, dtype=np.float64) om_tn = np.logical_and(oflip, y_true[cond_vec_unpriv] == dataset_true.unfavorable_label, dtype=np.float64) om_fn = np.logical_and(oflip, y_true[cond_vec_unpriv] == dataset_true.favorable_label, dtype=np.float64) om_fp = np.logical_and(oconst, y_true[cond_vec_unpriv] == dataset_true.unfavorable_label, dtype=np.float64) om_tp = np.logical_and(oconst, y_true[cond_vec_unpriv] == dataset_true.favorable_label, dtype=np.float64) # A_eq - 2-D array which, when matrix-multiplied by x, # gives the values of the equality constraints at x # b_eq - 1-D array of values representing the RHS of each equality # constraint (row) in A_eq. # Used to impose equality of odds constraint A_eq = [[(np.mean(sconst*sm_tp) - np.mean(sflip*sm_tp)) / sbr, (np.mean(sflip*sm_fn) - np.mean(sconst*sm_fn)) / sbr, (np.mean(oflip*om_tp) - np.mean(oconst*om_tp)) / obr, (np.mean(oconst*om_fn) - np.mean(oflip*om_fn)) / obr], [(np.mean(sconst*sm_fp) - np.mean(sflip*sm_fp)) / (1-sbr), (np.mean(sflip*sm_tn) - np.mean(sconst*sm_tn)) / (1-sbr), (np.mean(oflip*om_fp) - np.mean(oconst*om_fp)) / (1-obr), (np.mean(oconst*om_tn) - np.mean(oflip*om_tn)) / (1-obr)]] b_eq = [(np.mean(oflip*om_tp) + np.mean(oconst*om_fn)) / obr - (np.mean(sflip*sm_tp) + np.mean(sconst*sm_fn)) / sbr, (np.mean(oflip*om_fp) + np.mean(oconst*om_tn)) / (1-obr) - (np.mean(sflip*sm_fp) + np.mean(sconst*sm_tn)) / (1-sbr)] # Linear program self.model_params = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq) return self
[docs] def predict(self, dataset): """Perturb the predicted labels to obtain new labels that satisfy equalized odds constraints. Args: dataset (BinaryLabelDataset): Dataset containing labels that needs to be transformed. dataset (BinaryLabelDataset): Transformed dataset. """ if self.seed is not None: np.random.seed(self.seed) # Get the model parameters output from fit sp2p, sn2p, op2p, on2p = self.model_params.x # Create boolean conditioning vectors for protected groups cond_vec_priv = utils.compute_boolean_conditioning_vector( dataset.protected_attributes, dataset.protected_attribute_names, self.privileged_groups) cond_vec_unpriv = utils.compute_boolean_conditioning_vector( dataset.protected_attributes, dataset.protected_attribute_names, self.unprivileged_groups) # Randomly flip labels according to the probabilities in model_params self_fair_pred = dataset.labels[cond_vec_priv].copy() self_pp_indices, _ = np.nonzero( dataset.labels[cond_vec_priv] == dataset.favorable_label) self_pn_indices, _ = np.nonzero( dataset.labels[cond_vec_priv] == dataset.unfavorable_label) np.random.shuffle(self_pp_indices) np.random.shuffle(self_pn_indices) n2p_indices = self_pn_indices[:int(len(self_pn_indices) * sn2p)] self_fair_pred[n2p_indices] = dataset.favorable_label p2n_indices = self_pp_indices[:int(len(self_pp_indices) * (1 - sp2p))] self_fair_pred[p2n_indices] = dataset.unfavorable_label othr_fair_pred = dataset.labels[cond_vec_unpriv].copy() othr_pp_indices, _ = np.nonzero( dataset.labels[cond_vec_unpriv] == dataset.favorable_label) othr_pn_indices, _ = np.nonzero( dataset.labels[cond_vec_unpriv] == dataset.unfavorable_label) np.random.shuffle(othr_pp_indices) np.random.shuffle(othr_pn_indices) n2p_indices = othr_pn_indices[:int(len(othr_pn_indices) * on2p)] othr_fair_pred[n2p_indices] = dataset.favorable_label p2n_indices = othr_pp_indices[:int(len(othr_pp_indices) * (1 - op2p))] othr_fair_pred[p2n_indices] = dataset.unfavorable_label # Mutated, fairer dataset with new labels dataset_new = dataset.copy() new_labels = np.zeros_like(dataset.labels, dtype=np.float64) new_labels[cond_vec_priv] = self_fair_pred new_labels[cond_vec_unpriv] = othr_fair_pred dataset_new.labels = new_labels return dataset_new
[docs] def fit_predict(self, dataset_true, dataset_pred): """fit and predict methods sequentially.""" return self.fit(dataset_true, dataset_pred).predict(dataset_pred)