Source code for aif360.algorithms.preprocessing.optim_preproc

# Original work Copyright 2017 Flavio Calmon
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
from warnings import warn

import numpy as np
import pandas as pd

from aif360.algorithms import Transformer
from aif360.datasets import BinaryLabelDataset


[docs]class OptimPreproc(Transformer): """Optimized preprocessing is a preprocessing technique that learns a probabilistic transformation that edits the features and labels in the data with group fairness, individual distortion, and data fidelity constraints and objectives [3]_. References: .. [3] F. P. Calmon, D. Wei, B. Vinzamuri, K. Natesan Ramamurthy, and K. R. Varshney. "Optimized Pre-Processing for Discrimination Prevention." Conference on Neural Information Processing Systems, 2017. Based on code available at: https://github.com/fair-preprocessing/nips2017 """ def __init__(self, optimizer, optim_options, unprivileged_groups=None, privileged_groups=None, verbose=False, seed=None): """ Args: optimizer (class): Optimizer class. optim_options (dict): Options for optimization to estimate the transformation. unprivileged_groups (dict): Representation for unprivileged group. privileged_groups (dict): Representation for privileged group. verbose (bool, optional): Verbosity flag for optimization. seed (int, optional): Seed to make `fit` and `predict` repeatable. Note: This algorithm does not use the privileged and unprivileged groups that are specified during initialization yet. Instead, it automatically attempts to reduce statistical parity difference between all possible combinations of groups in the dataset. """ super(OptimPreproc, self).__init__(optimizer=optimizer, optim_options=optim_options, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups, verbose=verbose, seed=seed) self.seed = seed self.optimizer = optimizer self.optim_options = optim_options self.verbose = verbose self.unprivileged_groups = unprivileged_groups self.privileged_groups = privileged_groups if unprivileged_groups or privileged_groups: warn("Privileged and unprivileged groups specified will not be " "used. The protected attributes are directly specified in the " "data preprocessing function. The current implementation " "automatically adjusts for discrimination across all groups. " "This can be changed by changing the optimization code.")
[docs] def fit(self, dataset, sep='='): """Compute optimal pre-processing transformation based on distortion constraint. Args: dataset (BinaryLabelDataset): Dataset containing true labels. sep (str, optional): Separator for converting one-hot labels to categorical. Returns: OptimPreproc: Returns self. """ if len(np.unique(dataset.instance_weights)) > 1: warn("Optimized pre-processing will ignore instance_weights in " "the dataset during fit.") # Convert the dataset to a dataframe and preprocess df, _ = dataset.convert_to_dataframe(de_dummy_code=True, sep=sep, set_category=True) # Subset the protected attribute names and attribute values from # input parameters self.protected_attribute_names = dataset.protected_attribute_names self.privileged_protected_attributes = dataset.privileged_protected_attributes self.unprivileged_protected_attributes = dataset.unprivileged_protected_attributes # Feature names self.Y_feature_names = dataset.label_names self.X_feature_names = [n for n in df.columns.tolist() if n not in self.Y_feature_names and n not in self.protected_attribute_names] self.feature_names = (self.X_feature_names + self.Y_feature_names + self.protected_attribute_names) # initialize a new OptTools object self.OpT = self.optimizer(df=df, features=self.feature_names) # Set features self.OpT.set_features(D=self.protected_attribute_names, X=self.X_feature_names, Y=self.Y_feature_names) # Set Distortion self.OpT.set_distortion(self.optim_options['distortion_fun'], clist=self.optim_options['clist']) # solve optimization for previous parameters self.OpT.optimize(epsilon=self.optim_options['epsilon'], dlist=self.optim_options['dlist'], verbose=self.verbose) # Compute marginals self.OpT.compute_marginals() return self
[docs] def transform(self, dataset, sep='=', transform_Y=True): """Transform the dataset to a new dataset based on the estimated transformation. Args: dataset (BinaryLabelDataset): Dataset containing labels that needs to be transformed. transform_Y (bool): Flag that mandates transformation of Y (labels). """ if len(np.unique(dataset.instance_weights)) > 1: warn("Optimized pre-processing will ignore instance_weights in " "the dataset during predict. The transformed dataset will " "have all instance weights set to 1.") # Convert the dataset to a dataframe and preprocess df, _ = dataset.convert_to_dataframe(de_dummy_code=True, sep=sep, set_category=True) # Feature names Y_feature_names = dataset.label_names D_feature_names = self.protected_attribute_names X_feature_names = [n for n in df.columns.tolist() if n not in self.Y_feature_names and n not in self.protected_attribute_names] if (X_feature_names != self.X_feature_names or D_feature_names != self.protected_attribute_names): raise ValueError("The feature names of inputs and protected " "attributes must match with the training dataset.") if transform_Y and (Y_feature_names != self.Y_feature_names): raise ValueError("The label names must match with that in the training dataset") if transform_Y: # randomized mapping when Y is requested to be transformed dfP_withY = self.OpT.dfP.applymap(lambda x: 0 if x < 1e-8 else x) dfP_withY = dfP_withY.divide(dfP_withY.sum(axis=1), axis=0) df_transformed = _apply_randomized_mapping(df, dfP_withY, features=D_feature_names+X_feature_names+Y_feature_names, random_seed=self.seed) else: # randomized mapping when Y is not requested to be transformed d1 = self.OpT.dfFull.reset_index().groupby( D_feature_names+X_feature_names).sum() d2 = d1.transpose().reset_index().groupby(X_feature_names).sum() dfP_noY = d2.transpose() dfP_noY = dfP_noY.drop(Y_feature_names, 1) dfP_noY = dfP_noY.applymap(lambda x: x if x > 1e-8 else 0) dfP_noY = dfP_noY/dfP_noY.sum() dfP_noY = dfP_noY.divide(dfP_noY.sum(axis=1), axis=0) df_transformed = _apply_randomized_mapping( df, dfP_noY, features=D_feature_names+X_feature_names, random_seed=self.seed) # Map the protected attributes to numeric values for idx, p in enumerate(self.protected_attribute_names): pmap = dataset.metadata["protected_attribute_maps"][idx] pmap_rev = dict(zip(pmap.values(), pmap.keys())) df_transformed[p] = df_transformed[p].replace(pmap_rev) # Map the labels to numeric values for idx, p in enumerate(Y_feature_names): pmap = dataset.metadata["label_maps"][idx] pmap_rev = dict(zip(pmap.values(), pmap.keys())) df_transformed[p] = df_transformed[p].replace(pmap_rev) # Dummy code and convert to a dataset df_dum = pd.concat([pd.get_dummies(df_transformed.loc[:, X_feature_names], prefix_sep="="), df_transformed.loc[:, Y_feature_names+D_feature_names]], axis=1) # Create a dataset out of df_dum dataset_transformed = BinaryLabelDataset( df=df_dum, label_names=Y_feature_names, protected_attribute_names=self.protected_attribute_names, privileged_protected_attributes=self.privileged_protected_attributes, unprivileged_protected_attributes=self.unprivileged_protected_attributes, favorable_label=dataset.favorable_label, unfavorable_label=dataset.unfavorable_label, metadata=dataset.metadata) return dataset_transformed
[docs] def fit_transform(self, dataset, sep='=', transform_Y=True): """Perfom :meth:`fit` and :meth:`transform` sequentially.""" return self.fit(dataset, sep=sep).transform(dataset, sep=sep, transform_Y=transform_Y)
############################## #### Supporting functions #### ############################## def _apply_randomized_mapping(df, dfMap, features=[], random_seed=None): """Apply Randomized mapping to create a new dataframe Args: df (DataFrame): Input dataframe dfMap (DataFrame): Mapping parameters features (list): Feature names for which the mapping needs to be applied random_seed (int): Random seed Returns: Perturbed version of df according to the randomizedmapping """ if random_seed is not None: np.random.seed(seed=random_seed) df2 = df[features].copy() rem_cols = [l for l in df.columns if l not in features] if rem_cols != []: df3 = df[rem_cols].copy() idx_list = [tuple(i) for i in df2.itertuples(index=False)] draw_probs = dfMap.loc[idx_list] draws_possible = draw_probs.columns.tolist() # Make random draws - as part of randomizing transformation def draw_ind(x): return np.random.choice(range(len(draws_possible)), p=x) draw_inds = [draw_ind(x) for x in draw_probs.values] df2.loc[:, dfMap.columns.names] = [draws_possible[x] for x in draw_inds] if rem_cols != []: return pd.concat([df2, df3], axis=1) else: return df2