Source code for aif360.datasets.standard_dataset

from logging import warning

import numpy as np
import pandas as pd

from aif360.datasets import BinaryLabelDataset


[docs]class StandardDataset(BinaryLabelDataset): """Base class for every :obj:`BinaryLabelDataset` provided out of the box by aif360. It is not strictly necessary to inherit this class when adding custom datasets but it may be useful. This class is very loosely based on code from https://github.com/algofairness/fairness-comparison. """ def __init__(self, df, label_name, favorable_classes, protected_attribute_names, privileged_classes, instance_weights_name='', scores_name='', categorical_features=[], features_to_keep=[], features_to_drop=[], na_values=[], custom_preprocessing=None, metadata=None): """ Subclasses of StandardDataset should perform the following before calling `super().__init__`: 1. Load the dataframe from a raw file. Then, this class will go through a standard preprocessing routine which: 2. (optional) Performs some dataset-specific preprocessing (e.g. renaming columns/values, handling missing data). 3. Drops unrequested columns (see `features_to_keep` and `features_to_drop` for details). 4. Drops rows with NA values. 5. Creates a one-hot encoding of the categorical variables. 6. Maps protected attributes to binary privileged/unprivileged values (1/0). 7. Maps labels to binary favorable/unfavorable labels (1/0). Args: df (pandas.DataFrame): DataFrame on which to perform standard processing. label_name: Name of the label column in `df`. favorable_classes (list or function): Label values which are considered favorable or a boolean function which returns `True` if favorable. All others are unfavorable. Label values are mapped to 1 (favorable) and 0 (unfavorable) if they are not already binary and numerical. protected_attribute_names (list): List of names corresponding to protected attribute columns in `df`. privileged_classes (list(list or function)): Each element is a list of values which are considered privileged or a boolean function which return `True` if privileged for the corresponding column in `protected_attribute_names`. All others are unprivileged. Values are mapped to 1 (privileged) and 0 (unprivileged) if they are not already numerical. instance_weights_name (optional): Name of the instance weights column in `df`. categorical_features (optional, list): List of column names in the DataFrame which are to be expanded into one-hot vectors. features_to_keep (optional, list): Column names to keep. All others are dropped except those present in `protected_attribute_names`, `categorical_features`, `label_name` or `instance_weights_name`. Defaults to all columns if not provided. features_to_drop (optional, list): Column names to drop. *Note: this overrides* `features_to_keep`. na_values (optional): Additional strings to recognize as NA. See :func:`pandas.read_csv` for details. custom_preprocessing (function): A function object which acts on and returns a DataFrame (f: DataFrame -> DataFrame). If `None`, no extra preprocessing is applied. metadata (optional): Additional metadata to append. """ # 2. Perform dataset-specific preprocessing if custom_preprocessing: df = custom_preprocessing(df) # 3. Drop unrequested columns features_to_keep = features_to_keep or df.columns.tolist() keep = (set(features_to_keep) | set(protected_attribute_names) | set(categorical_features) | set([label_name])) if instance_weights_name: keep |= set([instance_weights_name]) df = df[sorted(keep - set(features_to_drop), key=df.columns.get_loc)] categorical_features = sorted(set(categorical_features) - set(features_to_drop), key=df.columns.get_loc) # 4. Remove any rows that have missing data. dropped = df.dropna() count = df.shape[0] - dropped.shape[0] if count > 0: warning("Missing Data: {} rows removed from {}.".format(count, type(self).__name__)) df = dropped # 5. Create a one-hot encoding of the categorical variables. df = pd.get_dummies(df, columns=categorical_features, prefix_sep='=') # 6. Map protected attributes to privileged/unprivileged privileged_protected_attributes = [] unprivileged_protected_attributes = [] for attr, vals in zip(protected_attribute_names, privileged_classes): privileged_values = [1.] unprivileged_values = [0.] if callable(vals): df[attr] = df[attr].apply(vals) elif np.issubdtype(df[attr].dtype, np.number): # this attribute is numeric; no remapping needed privileged_values = vals unprivileged_values = list(set(df[attr]).difference(vals)) else: # find all instances which match any of the attribute values priv = np.logical_or.reduce(np.equal.outer(vals, df[attr])) df.loc[priv, attr] = privileged_values[0] df.loc[~priv, attr] = unprivileged_values[0] privileged_protected_attributes.append( np.array(privileged_values, dtype=np.float64)) unprivileged_protected_attributes.append( np.array(unprivileged_values, dtype=np.float64)) # 7. Make labels binary favorable_label = 1. unfavorable_label = 0. if callable(favorable_classes): df[label_name] = df[label_name].apply(favorable_classes) elif np.issubdtype(df[label_name], np.number) and len(set(df[label_name])) == 2: # labels are already binary; don't change them favorable_label = favorable_classes[0] unfavorable_label = set(df[label_name]).difference(favorable_classes).pop() else: # find all instances which match any of the favorable classes pos = np.logical_or.reduce(np.equal.outer(favorable_classes, df[label_name])) df.loc[pos, label_name] = favorable_label df.loc[~pos, label_name] = unfavorable_label super(StandardDataset, self).__init__(df=df, label_names=[label_name], protected_attribute_names=protected_attribute_names, privileged_protected_attributes=privileged_protected_attributes, unprivileged_protected_attributes=unprivileged_protected_attributes, instance_weights_name=instance_weights_name, scores_names=[scores_name] if scores_name else [], favorable_label=favorable_label, unfavorable_label=unfavorable_label, metadata=metadata)