aif360.sklearn.inprocessing
.GridSearchReduction
- class aif360.sklearn.inprocessing.GridSearchReduction(prot_attr, estimator, constraints, constraint_weight=0.5, grid_size=10, grid_limit=2.0, grid=None, drop_prot_attr=True, loss='ZeroOne', min_val=None, max_val=None)[source]
Grid search reduction for fair classification or regression.
Grid search is an in-processing technique that can be used for fair classification or fair regression. For classification it reduces fair classification to a sequence of cost-sensitive classification problems, returning the deterministic classifier with the lowest empirical error subject to fair classification constraints [1] among the candidates searched. For regression it uses the same priniciple to return a deterministic regressor with the lowest empirical error subject to the constraint of bounded group loss [2].
References
- Parameters:
prot_attr – String or array-like column indices or column names of protected attributes.
estimator – An estimator implementing methods
fit(X, y, sample_weight)
andpredict(X)
, whereX
is the matrix of features,y
is the vector of labels, andsample_weight
is a vector of weights; labelsy
and predictions returned bypredict(X)
are either 0 or 1 – e.g. scikit-learn classifiers/regressors.constraints (str or fairlearn.reductions.Moment) – If string, keyword denoting the
fairlearn.reductions.Moment
object defining the disparity constraints – e.g., “DemographicParity” or “EqualizedOdds”. For a full list of possible options seeself.model.moments
. Otherwise, provide the desiredMoment
object defining the disparity constraints.constraint_weight – When the
selection_rule
is “tradeoff_optimization” (default, no other option currently) this float specifies the relative weight put on the constraint violation when selecting the best model. The weight placed on the error rate will be1-constraint_weight
.grid_size (int) – The number of Lagrange multipliers to generate in the grid.
grid_limit (float) – The largest Lagrange multiplier to generate. The grid will contain values distributed between
-grid_limit
andgrid_limit
by default.grid (pandas.DataFrame) – Instead of supplying a size and limit for the grid, users may specify the exact set of Lagrange multipliers they desire using this argument in a DataFrame.
drop_prot_attr (bool) – Flag indicating whether to drop protected attributes from training data.
loss (str) – String identifying loss function for constraints. Options include “ZeroOne”, “Square”, and “Absolute.”
min_val – Loss function parameter for “Square” and “Absolute,” typically the minimum of the range of y values.
max_val – Loss function parameter for “Square” and “Absolute,” typically the maximum of the range of y values.
Methods
Train a less biased classifier or regressor with the given training data.
get_metadata_routing
Get metadata routing of this object.
get_params
Get parameters for this estimator.
Predict output for the given samples.
Probability estimates.
score
Return the mean accuracy on the given test data and labels.
set_params
Set the parameters of this estimator.
Request metadata passed to the
score
method.- __init__(prot_attr, estimator, constraints, constraint_weight=0.5, grid_size=10, grid_limit=2.0, grid=None, drop_prot_attr=True, loss='ZeroOne', min_val=None, max_val=None)[source]
- Parameters:
prot_attr – String or array-like column indices or column names of protected attributes.
estimator – An estimator implementing methods
fit(X, y, sample_weight)
andpredict(X)
, whereX
is the matrix of features,y
is the vector of labels, andsample_weight
is a vector of weights; labelsy
and predictions returned bypredict(X)
are either 0 or 1 – e.g. scikit-learn classifiers/regressors.constraints (str or fairlearn.reductions.Moment) – If string, keyword denoting the
fairlearn.reductions.Moment
object defining the disparity constraints – e.g., “DemographicParity” or “EqualizedOdds”. For a full list of possible options seeself.model.moments
. Otherwise, provide the desiredMoment
object defining the disparity constraints.constraint_weight – When the
selection_rule
is “tradeoff_optimization” (default, no other option currently) this float specifies the relative weight put on the constraint violation when selecting the best model. The weight placed on the error rate will be1-constraint_weight
.grid_size (int) – The number of Lagrange multipliers to generate in the grid.
grid_limit (float) – The largest Lagrange multiplier to generate. The grid will contain values distributed between
-grid_limit
andgrid_limit
by default.grid (pandas.DataFrame) – Instead of supplying a size and limit for the grid, users may specify the exact set of Lagrange multipliers they desire using this argument in a DataFrame.
drop_prot_attr (bool) – Flag indicating whether to drop protected attributes from training data.
loss (str) – String identifying loss function for constraints. Options include “ZeroOne”, “Square”, and “Absolute.”
min_val – Loss function parameter for “Square” and “Absolute,” typically the minimum of the range of y values.
max_val – Loss function parameter for “Square” and “Absolute,” typically the maximum of the range of y values.
- fit(X, y)[source]
Train a less biased classifier or regressor with the given training data.
- Parameters:
X (pandas.DataFrame) – Training samples.
y (array-like) – Training output.
- Returns:
self
- predict(X)[source]
Predict output for the given samples.
- Parameters:
X (pandas.DataFrame) – Test samples.
- Returns:
numpy.ndarray – Predicted output per sample.
- predict_proba(X)[source]
Probability estimates.
The returned estimates for all classes are ordered by the label of classes for classification.
- Parameters:
X (pandas.DataFrame) – Test samples.
- Returns:
numpy.ndarray – returns the probability of the sample for each class in the model, where classes are ordered as they are in
self.classes_
.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') GridSearchReduction [source]
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self (object) – The updated object.